Design of the ITER high-frequency magnetic diagnostic coils
نویسندگان
چکیده
This paper is an overview of work carried out on the design of the ITER high-frequency magnetic diagnostic coil (HF sensor). In the first part, the ITER requirements for the HF sensor are presented. In the second part, the ITER reference design of the HF sensor has been assessed and showed some potential weaknesses, which led us to the conclusion that alternative designs could usefully be examined. Several options have been explored, and are presented in the third part: (a) direct laser cutting a metallic tube, (b) stacking of plane windings manufactured from a tungsten plate by electrical discharge machining, (c) coil using the conventional spring manufacture. In the fourth part, sensors using the low temperature co-fired ceramic technology (LTCC) are presented: (d) monolithic 1D magnetic flux sensors based on LTCC technology, and (e) monolithic 3D magnetic flux sensors based on the same LTCC technology. The solution which showed the best results is the monolithic 3D magnetic flux sensor based on LTCC.
منابع مشابه
Assessment of the ITER high-frequency magnetic diagnostic set
The ITER high-frequency (HF) magnetic diagnostic system has to provide essential measurements of MHD instabilities with vertical |δBMEAS/BPOL| ~ 10 (~1 G) for frequencies up to 2 MHz to resolve toroidal mode numbers (n) in the range |n| = 10 to |n| = 50. A review of the measurement requirements for HF MHD instabilities in ITER was initiated during the TW4 work-program and led to significant int...
متن کاملEmploying dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype
Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...
متن کاملNon-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)
Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...
متن کامل3-D RF Coil Design Considerations for MRI
High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...
متن کاملA New System of Contactless Power Transfer with Low Voltage Stress and Parasitic Capacitors Effect
In this paper, a high frequency contactless power transfer (CPT) system is designed with ∅2 inverter drive. This system works in 30MHz frequency and 380W power with low voltage stress and considers the inductive link parasitic capacitor effect. In the design, we formulated the inverter equations first and then suggested another design for the transmitter and the receiver coils as the energy tra...
متن کامل